If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-5m+3=0
a = 1; b = -5; c = +3;
Δ = b2-4ac
Δ = -52-4·1·3
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{13}}{2*1}=\frac{5-\sqrt{13}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{13}}{2*1}=\frac{5+\sqrt{13}}{2} $
| 2r2-7r+20=0 | | 9r-25=O | | 8x-5=4x-3 | | 7x/8+2=16 | | Y=0.21x+17.5 | | X=20-6x-1 | | 5p+5=p-5/3 | | 20-6x-1=x | | –10+10p=–4+8p | | 3(2x-6)=(5x+3) | | M1=(72-2x) | | 4(2x=5)=5x+4 | | 5x3-2x2-4x+1=0 | | 5(x-1)-11=2(x+1)+12 | | x/15=-3/9 | | (X+13)*2=x+33 | | x+5=(x+3)^ | | 6x²+10x+3=0 | | 24+12x=X | | 4x=2x-6x | | 9x+7x-2=-23(1-x) | | –8x–3= | | –8x–3=13;–3,–2,–1 | | 7b+4=4b-8 | | -9-z=-5 | | 24+12x=0 | | a-233=-202 | | 5n+2(n+2)+9=48 | | 1/3×12x-81=7x+33+3x | | 4(3u+3)+3u+2=4(u-1)+2u | | 20+12x=0 | | (2x×2+3x×3)/5=45 |